Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Applied Artificial Intelligence ; 36(1), 2022.
Article in English | APA PsycInfo | ID: covidwho-2282939

ABSTRACT

The COVID-19 pandemic has spread rapidly and significantly impacted most countries in the world. Providing an accurate forecast of COVID-19 at multiple scales would help inform public health decisions, but recent forecasting models are typically used at the state or country level. Furthermore, traditional mathematical models are limited by simplifying assumptions, while machine learning algorithms struggle to generalize to unseen trends. This motivates the need for hybrid machine learning models that integrate domain knowledge for accurate long-term prediction. We propose a three-layer, geographically informed ensemble, an extensive peer-learning framework, for predicting COVID-19 trends at the country, continent, and global levels. As the base layer, we develop a country-level predictor using a hybrid Graph Attention Network that incorporates a modified SIR model, adaptive loss function, and edge weights informed by mobility data. We aggregated 163 country GATs to train the continent and world MLP layers of the ensemble. Our results indicate that incorporating quantitatively accurate equations and real-world data to model inter-community interactions improves the performance of spatio-temporal machine learning algorithms. Additionally, we demonstrate that integrating geographic information (continent composition) improves the performance of the world predictor in our layered architecture. (PsycInfo Database Record (c) 2022 APA, all rights reserved)

2.
13th International Multi-Conference on Complexity, Informatics and Cybernetics, IMCIC 2022 ; 1:129-133, 2022.
Article in English | Scopus | ID: covidwho-1836706

ABSTRACT

The COVID-19 pandemic has significantly impacted most countries in the world. Analyzing COVID-19 data from these countries together is a prominent challenge. Under the sponsorship of NSF REU, this paper describes our experience with a ten-week project that aims to guide a REU scholar to develop a physics-guided graph attention network to predict the global COVID-19 Pandemics. We mainly presented the preparation, implementation, and dissemination of the addressed project. The COVID-19 situation in a country could be dramatically different from that of others, which suggests that COVID-19 pandemic data are generated based on different mechanisms, making COVID-19 data in different countries follow different probability distributions. Learning more than one hundred underlying probability distributions for countries in the world from large scale COVID-19 data is beyond a single machine learning model. To address this challenge, we proposed two team-learning frameworks for predicting the COVID-19 pandemic trends: peer learning and layered ensemble learning framework. This addressed framework assigns an adaptive physics-guided graph attention network (GAT) to each learning agent. All the learning agents are fabricated in a hierarchical architecture, which enables agents to collaborate with each other in peer-to-peer and cross-layer way. This layered architecture shares the burden of large-scale data processing on machine learning models of all units. Experiments are run to verify the effectiveness of our approaches. The results indicate the proposed ensemble outperforms baseline methods. Besides documented on GitHub, this work has resulted in two journal papers. © 2022 IMCIC 2022 - 13th International Multi-Conference on Complexity, Informatics and Cybernetics, Proceedings. All rights reserved.

SELECTION OF CITATIONS
SEARCH DETAIL